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Non-Gaussian random-matrix ensembles with banded spectra
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Non-Gaussian random-matrix ensembles are important in many applications. We propose Monte Carlo and
Langevin methods for generating non-Gaussian ensembles and their eigenvalue spectra. We also provide a
general framework for analytic studies of the level density in these ensembles. We show that, in general, the
level densities exhibit banded spectra, with important implications for mesoscopic systems and complex nuclei.
The universality of energy-level fluctuations is confirmed.
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Random matrices arise in diverse physical systems@1–6#,
e.g., quantum chaotic systems, complex nuclei, atoms
molecules, disordered and mesoscopic systems, etc. T
also occur in field-theoretic formulations of problems in co
densed matter and high-energy physics@5,6#.

To date, research interest has focused mainly on Gaus
random-matrix ensembles. However, recent studies indi
the relevance of non-Gaussian random-matrix ensemble
various physical applications. These ensembles were o
nally introduced by Dyson@7# for studies of level densities in
complex many-body systems, and have recently proved
ful in establishing the universality of energy-level corre
tions @8,9# observed in numerous examples of quantum c
otic systems. They also arise naturally in various ot
contexts, e.g., planar approximations in quantum field the
@5,10#, models of structural glasses@11#, and quantum trans
port problems@6#.

This paper studies non-Gaussian ensembles and has
major goals. First, we propose different techniques based
Monte Carlo~MC! and Langevin dynamics to simulate the
ensembles. Numerical studies of non-Gaussian ensem
have not been possible so far due to the complicated co
lations ~absent in Gaussian ensembles! between matrix ele-
ments. Second, we provide analytical and numerical res
for energy-level spectra that exhibit multiple bands, a
clearly demarcate universal and nonuniversal featu
Banded spectra have received limited attention in the lite
ture, even though we find they are generic to matrix
sembles. Such spectra have specific applications in the s
of universal conductance fluctuations in mesoscopic syste
shell effects in statistical many-particle spectroscopy, a
band structures in disordered solids. We elucidate som
these applications at the end of this paper.

We consider ensembles ofN-dimensional matrices~H!
with joint-probability density~jpd! of matrix elements given
by

P~H !5C exp@2bN tr V~H !#, ~1!

where C is the normalization constant. Hereb labels the
three standard classes of matrix ensembles, i.e.,b51,2,4
refers to ensembles of Hermitian matrices which are r
complex, and quaternion real, respectively@1#. ~The factor
bN in the exponent is introduced for subsequent con
nience.! The Gaussian ensembles correspond to the ma
‘‘potential’’ function V(H)5gH2/2(g.0). We are inter-
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ested in nonquadratic functionsV(H), which can give rise to
banded eigenvalue spectra. SinceP(H) depends only on the
trace ofV(H), the ensembles are invariant under orthogon
unitary and symplectic transformations forb51,2,4 respec-
tively. The corresponding jpd of energy levels~eigenvalues
x1 , . . . ,xN of H) is @7#, with c as the normalization constan

p~x1 , . . . ,xN!5c)
i . j

uxi2xj ubexpF2bN(
k

V~xk!G . ~2!

This can be interpreted as a Boltzmann distributione2bW,
where the ‘‘potential’’ W consists of a repulsive two
dimensional Coulomb~logarithmic! potential, and a one-
body binding potentialV.

Following Dyson, the jpd in Eqs.~1! and~2! are obtained
as equilibrium (t→`) densities for the following Langevin
equations@7,12#:

dHjk
(u)

dt
52

]@N tr V~H !#

]H jk
(u)

1j jk
(u)~t!, ~3!

dxj

dt
5 (

k(Þ j )

1

xj2xk
2

]@NV~xj !#

]xj
1j j~t!. ~4!

In Eq. ~3!, H jk
(u) is the matrix element characterized byu

50, . . . ,b21, theH (u) being the~real! component matrices
of H, symmetric foru50 and antisymmetric foruÞ0. The
Gaussian white noisesj in Eqs.~3! and~4! are uncorrelated,
and have zero mean and variance 2b21 @b21 for off-
diagonal elements in Eq.~3!#. For finite ‘‘time’’ t, Eqs.~3!
and ~4! define other ensembles used, e.g., in the study
symmetry breaking in quantum chaotic systems@12,13#.

Equation~3! provides a convenient prescription for ge
erating matrices with an arbitrary distribution, and natura
incorporates the correlations between elements. Simila
Eq. ~4! gives an efficient method for generating eigenvalu
in such ensembles, though one must carefully account for
unphysical level crossing induced by the discretization p
cedure. However, if one is interested in the equilibrium d
tributions alone, a faster method is available, viz., stocha
MC sampling @14# of the matrix space in Eq.~1! or the
eigenvalue space in Eq.~2!. The MC approach has extensiv
applications in diverse areas of physics@14#. In the context
of Eq. ~2!, the MC method is implemented as follows. W
start withxj -variables ordered sequentially on a line. A st
chastic move assigns, to a randomly chosenxk , the value
©2003 The American Physical Society01-1
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xk8P(xk21 ,xk11) with a uniform probability. The move is
accepted with probability exp(2bDW), where DW is the
change in potentialW resulting from the move. An MC step
~MCS! is defined asN moves, whether successful or no
Typically, a reasonable initial condition equilibrates very ra
idly.

Let us first provide an analytic framework for the study
level density in such ensembles, which is defined asr(x)
5N21*@(d(x2xj )#p(x1 , . . . ,xN)dx1•••dxN . For finite
N, this can be obtained in terms of orthogonal and ske
orthogonal polynomials with exp@2bNV(x)# as the weight
function @7–9#. For largeN, r(x) is the solution of the inte-
gral equation,

E r~y!

x2y
dy5V8~x!, ~5!

valid for regions wherer(x)Þ0, the integral in Eq.~5! be-
ing the principal-value integral. Equation~5! is obtained
from Eq. ~4! by balancing repulsive and attractive forces f
the levelxj in equilibrium, and is the minimization conditio
for the potentialW. Note that a level introduced in the regio
wherer(x)50 is not in equilibrium because it experiences
net attractive force.@In Eq. ~5!, the dependence onb, N have
been factored out.# Using the method of Ref.@9#, we can
write r(x) more explicitly in the three general cases of i
terest as follows.

Case I.@V(x)→` when uxu→`],

p2r252E FV8~x!2V8~y!

x2y Gr~y!dy2@V8~x!#2. ~6!

Case II.@V(61)5`#,

p2~12x2!r252E F ~12x2!V8~x!2~12y2!V8~y!

x2y Gr~y!dy

2~12x2!@V8~x!#211. ~7!

Case III. @V(0)5`,V(x)→` asx→`],

p2xr252E FxV8~x!2yV8~y!

x2y Gr~y!dy2x@V8~x!#2.

~8!

Equations~6!–~8! are valid when their right-hand sides a
non-negative,r(x) being zero elsewhere. Furthermore, wh
V(x) is a low-order polynomial, the integral terms can
expressed in terms of the low-order moments of the le
density, M p5*xpr(x)dx, which can be interpreted as th
order parameter for the onset of multiple bands in the sp
trum.

As a simple example, consider the Gaussian case,V(x)
5gx2/2 in Eq. ~6!, giving ~sinceM051) the ‘‘semicircle’’
result,p2@r(x)#252g2g2x2, valid for uxu<(2/g)1/2. Simi-
larly, if V(x)5O(N21) in Eq. ~7!, then in the limitN→`,
r(x)5p21(12x2)21/2 for uxu,1, extending thereby the Ja
cobi result of Refs.@8,9# to a larger class of weight functions
One can analogously obtain the Laguerre result of Refs.@8,9#
and its extensions from Eq.~8!.
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In the above examples, the asymptotic density exhib
single bands. To demonstrate the two-band structure, we
sider the quartic potential@11,15#

V~x!5gS x4

4
2a

x2

2 D , g.0, ~9!

which has two minima fora.0, the depth of the wells being
determined by the value ofg. Then, Eq.~6! yields

p2@r~x!#252g~M22a!1x2@2g2g2~x22a!2#. ~10!

Now, if M25a, thenr(0)50, suggesting the possibility o
band splitting atx50; in fact r(x) is then zero forx2<a
2(2/g)1/2 implying a two-band structure fora>ac
[(2/g)1/2. To prove this, we evaluateM2 by the polynomial
method. SinceM2 does not depend onb, we considerb
52 for which @7–9#

r~x!5
1

N (
m50

N21

~hm!21@Pm~x!#2exp@22NV~x!#, ~11!

where Pm(x) are the orthogonal polynomials with norma
ization hm , i.e., *Pm(x)Pn(x)exp@22NV(x)#dx5hmdmn . For
monic polynomials~having highest coefficient unity!, we
have the three-term recursion relation,xPm5Pm11
1Xm21Pm21, where Xm5hm11 /hm , for m>0 and X21
50. Since*dx@Pm11(x)Pm(x)exp$22NV(x)%#850, we have

2gNXm~Xm111Xm1Xm212a!5m11, ~12!

valid @16# for Eq. ~9!. It can be shown that, for largem and
N, Xm alternates between@a6(a222m/gN)1/2#/2 for m
<(a/ac)

2N, while, for m>(a/ac)
2N, Xm becomes@a

1(a216m/gN)1/2#/6, all three values being the same f
m5(a/ac)

2N. Thus M25N21(m50
N21(Xm1Xm21) is given,

for N→`, by

M25a, a>ac ,

5~g/27!@~a216g21!3/219g21a1a3#, a<ac ,

~13!

the last result being valid for negativea also. Finally, Eqs.
~10! and ~13! yield, for a>ac , the two-band density

pr~x!5guxu@2g212~x22a!2#1/2, ~14!

and, fora<ac , the one-band density

pr~x!5g@~1/3!$~a216g21!1/222a%1x2#

3@~2/3!$~a216g21!1/21a%2x2#1/2. ~15!

In both cases, the density is zero when the right-hand s
are imaginary. Note thatr(x) for the one-band case i
peaked atx50 for a<2(2/g)1/2, and develops a minimum
at x50 for a.2(2/g)1/2. Generalized versions of Eq.~5!
have been proposed in the context of disordered and me
copic systems@17,18#; we expect banded spectra to arise
these cases also.

The above approach is applicable to a variety of polyn
mial potentials in all three cases. The number of bands
1-2
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restricted by the number of potential minima. The only an
lytical difficulties arise in the evaluation of higher-order m
ments of the level density; however, these can be comp
by numerical solution of the coefficients in the appropria
polynomial-recursion relation. We have examined seve
potentials in this context.

In general, multiple-well potentials~with equal depths!
will lead to multiple-band spectra for sufficiently deep wel
To illustrate this, let us consider a simple potential where
number of bands~n! is a parameter:

V~x!5g@~21!ncos~npx!21#, uxu,1, ~16!

with hard walls atuxu51 ~Case II above!. The parameterg
determines the depth of the potential, and, we expect
n-band spectrum forg.gc , with the critical value depend
ing on n.

For cases where the analytic density cannot be obta
explicitly @e.g., for the potential in Eq.~16!#, one can numeri-
cally solve Eqs.~6!–~8! or compute the polynomials numer
cally and use Eq.~11!. We have implemented a simple iter
tive mapping that relaxes to the equilibrium solution of Eq
~6!–~8!. However, the mapping exhibits limit-cycle behavi
around bifurcation points, e.g.,a5ac for the quartic poten-
tial. This behavior requires careful investigation. Here
present analytic results obtained using the polynom
method. The advantage of this method is that it also yie
small-N density oscillations.

FIG. 1. Level density for the quartic potential witha522, 0,
A2, 2 ~sequentially from the top! andg51. The MC results~shown
as filled circles! are forb52, and correspond toN510 in ~a!–~d!
and N51000 in ~e!–~h!. The solid lines are analytic results ob
tained from Eq.~11! in ~a!–~d!, and from Eqs.~14! and ~15! in
~e!–~h!.
02520
-

ed

al

.
e

n

ed

.

l
s

Our MC simulations were performed for a wide range
N values (N<1000) with averaging over, say, 105/N spectral
realizations, spaced widely apart in time~50 MCS!. We have
considered several potentials forb51,2,4. We have also ob
tained results from the Langevin method. Here we disc
representative MC results for the quartic and cosine po
tials.

For the level densityr(x), we present MC results forb
52. Figs. 1~a!–1~d! showr(x) vs x for the quartic potential
with g51, N510, anda522,0,A2,2 demonstrating the
bifurcation from the one-band case to the two-band case.
emphasize that the oscillations in the density are predicted
polynomial result~11!, and a detailed examination show
that our MC method reproduces them accurately. Figu
1~e!–1~h! show analogous results forN51000, which are
numerically indistinguishable from analytical results~14!
and ~15!. In fact, only about 0.01% of the numerically
obtained levels forN51000 lie outside the predicted band
~which correspond toN→`). Note that Figs. 1~b! and 1~f!

FIG. 2. Level density for the cosine potential withn55 and~a!
g50.03, ~b!g51.0. The MC results are forb52 andN51000.
Solid lines are results obtained from Eq.~11!. The dashed line in~a!
denotes the analytic result forg50, and is shown for comparison
~c! shows the polynomial results and their linear fits forgc1 andgc2

vs 1/n; the fit appears to be better forgc1.
1-3
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correspond to the pure quartic case~i.e., a50). In contrast
to the pure quadratic case~i.e., Gaussian ensembles!, the
density exhibits a dip near the origin because the attrac
force for uxu;0 is weaker in the quartic case.

Figures 2~a! and 2~b! show the MC results for the onse
and formation of the multiple-band structure for the cos
potential withn55 andN51000. The corresponding ana
lytic results are obtained from the polynomial method
N.200. We definegc1 andgc2 as theg values at which the
first and last band-splitting occur. The scaling dependenc
these quantities onn ~the number of potential minima! can
be approximately ascertained by an overlap argument b

FIG. 3. ~a! p(s) vs s for b51,2,4. The MC results are for th
quartic potential withg51, a52 ~left band!, andN51000. The
solid lines represent the corresponding Gaussian-ensemble re
@1,2#, p(s)5Asbexp(2Bs2) with A,B determined from the condi
tions of unit normalization and unit average spacing.~b! S2(r ) vs r
with MC results as in~a!. The Gaussian-ensemble results are tak
from @2#.
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on a quadratic expansion around the minima. This argum
yieldsgc1 , gc2 ;1/n, and the polynomial results in Fig. 2~c!
confirm this scaling dependence.

Next, we examine universality of the fluctuations abo
the level density. We have studied@1–3# ~a! p(s), the density
of spacingss between adjacent levels and~b! S2(r ), the
variance of number of levels in intervals of lengthr, both r
ands being measured in terms of the local average spaci
~The spectra were ‘‘unfolded’’ using the analytic level de
sity.! Figures 3~a! and 3~b! show p(s) and S2(r ) for the
quartic potential with the two-band spectra fora52, and
b51,2,4. Agreement with the Gaussian results is excelle
the same is also true for other values ofa and other poten-
tials. This is the first numerical confirmation of universali
in non-Gaussian ensembles, and agrees with earlier pre
tions @8,9#.

Finally, we come to specific physical applications of o
results. Non-Gaussian ensembles arise in the modelin
conductance fluctuations in mesoscopic systems. Typic
these ensembles correspond to~a! different forms ofV(x) in
Eq. ~2! and/or ~b! modification of the two-body interaction
term @6,18#. ~Similar ensembles arise in studies of the met
insulator transition in disordered systems@17#.! An important
theme in mesoscopic physics is the universality of cond
tance fluctuations, which is a consequence of universality
global eigenvalue correlationsin matrix ensembles. How-
ever, in the context of banded spectra, cross-band corr
tions are crucial, and result in the breakdown of global u
versality @19#. This has important physical implications, an
requires detailed investigation. In a different context, the p
banding dip in the level density@cf. Figs. 1~b! and 1~f!# is
analogous to shell effects in nuclear level densities, point
to the applicability of these ensembles and theirembedded
versions to statistical many-particle spectroscopy@13#.

To summarize, non-Gaussian random-matrix ensem
are of increasing importance in diverse physical applicatio
We have proposed different Monte Carlo and Lange
methods for generating the spectra of such ensembles.
thermore, we have formulated an analytic framework for o
taining the level densities of these spectra. In this paper,
focused on ensembles which give rise to banded spectra
have studied several potential functions in this context.
have confirmed the universality of energy-level fluctuatio
Finally, we stress that our methods are easily adapted to
sembles of transmission and scattering matrices.
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