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Non-Gaussian random-matrix ensembles are important in many applications. We propose Monte Carlo and
Langevin methods for generating non-Gaussian ensembles and their eigenvalue spectra. We also provide a
general framework for analytic studies of the level density in these ensembles. We show that, in general, the
level densities exhibit banded spectra, with important implications for mesoscopic systems and complex nuclei.
The universality of energy-level fluctuations is confirmed.
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Random matrices arise in diverse physical systgims), ested in nonquadratic functioM§H), which can give rise to
e.g., quantum chaotic systems, complex nuclei, atoms anganded eigenvalue spectra. SiriH) depends only on the
molecules, disordered and mesoscopic systems, etc. Thesace ofV(H), the ensembles are invariant under orthogonal,
also occur in field-theoretic formulations of problems in con-unitary and symplectic transformations f6e=1,2,4 respec-

densed matter and high-energy phygis$|. tively. The corresponding jpd of energy levdkgenvalues
To date, research interest has focused mainly on Gaussiag, . .. xy of H) is[7], with c as the normalization constant,

random-matrix ensembles. However, recent studies indicate

the relevance of non-Gaussian random-matrix ensembles in 5y xn)=clI [x—x;|Pexg — BN V(x)|. (2)

various physical applications. These ensembles were origi- i>] 3

nally introduced by Dysofi7] for studies of level densities in . _ S
complex many-body systems, and have recently proved usdhis can be interpreted as a Boltzmann distributéorf",
ful in establishing the universality of energy-level correla-Where the “potential” W consists of a repulsive two-
tions[8,9] observed in numerous examples of quantum chadimensional Coulomh(logarithmio potential, and a one-
otic systems. They also arise naturally in various othePody binding potentiaV. _
contexts, e.g., planar approximations in quantum field theory Following Dyson, the jpd in Eqg1) and(2) are obtained
[5,10], models of structural glass€$l], and quantum trans- as equilibrium ¢— ) densities for the following Langevin
port problemg6]. equationg7,12]:

This paper studies non-Gaussian ensembles and has two dH},f) AINTV(H)]

major goals. First, we propose different techniques based on — +§(g)(7)’ 3
Monte Carlo(MC) and Langevin dynamics to simulate these dr JHY ’

ensembles. Numerical studies of non-Gaussian ensembles

have not been possible so far due to the complicated corre- dx; D 1 JINV(x)] N 4
lations (absent in Gaussian ensemblegtween matrix ele- E_k(sﬁj) Xj— Xk X &(7). “)

ments. Second, we provide analytical and numerical results
for energy-level spectra that exhibit multiple bands, andn Eq. (3), H](If) is the matrix element characterized oy
clearly demarcate universal and nonuniversal features=0,... g—1, theH() being the(rea) component matrices
Banded spectra have received limited attention in the literapf H, symmetric forf=0 and antisymmetric fop#0. The
ture, even though we find they are generic to matrix enGaussian white noisesin Eqgs.(3) and(4) are uncorrelated,
sembles. Such spectra have specific applications in the stuéyd have zero mean and variancg 2 [B~! for off-
of universal conductance fluctuations in mesoscopic systemgjagonal elements in Eq3)]. For finite “time” 7, Egs.(3)
shell effects in statistical many-particle spectroscopy, angnd (4) define other ensembles used, e.g., in the study of
band structures in disordered solids. We elucidate some @ymmetry breaking in quantum chaotic systgrm2,13.
these applications at the end of this paper. Equation(3) provides a convenient prescription for gen-
We consider ensembles ®-dimensional matricesH)  erating matrices with an arbitrary distribution, and naturally
with joint-probability density(jpd) of matrix elements given incorporates the correlations between elements. Similarly,
by Eq. (4) gives an efficient method for generating eigenvalues
in such ensembles, though one must carefully account for the
P(H)=Cexd —BN1trvV(H)], (1) unphysical level crossing induced by the discretization pro-
cedure. However, if one is interested in the equilibrium dis-
where C is the normalization constant. Heg labels the tributions alone, a faster method is available, viz., stochastic
three standard classes of matrix ensembles, Be=1,2,4  MC sampling[14] of the matrix space in Eq(l) or the
refers to ensembles of Hermitian matrices which are realgigenvalue space in ER). The MC approach has extensive
complex, and quaternion real, respectively. (The factor applications in diverse areas of phys[dl]. In the context
BN in the exponent is introduced for subsequent conveof Eg. (2), the MC method is implemented as follows. We
nience) The Gaussian ensembles correspond to the matrigtart with x;-variables ordered sequentially on a line. A sto-
“potential” function V(H)=yH?/2(y>0). We are inter- chastic move assigns, to a randomly chosen the value
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Xp € (X—1,Xkr1) With a uniform probability. The move is In the above examples, the asymptotic density exhibits
accepted with probability exp(BAW), where AW is the  single bands. To demonstrate the two-band structure, we con-
change in potentialV resulting from the move. An MC step sider the quartic potentigll1,15

(MCS) is defined asN moves, whether successful or not. 4 X2

Typically, a reasonable initial condition equilibrates very rap- V(x)= y(z — a?) , >0, 9)

idly.

Let us first provide an analytic framework for the study of
level density in such ensembles, which is definedoés)
=N"H[Z8(x=x)Ip(X1, . .. Xn)dXy- - -dxy. For finite
N, this can be obtained in terms of orthogonal and skew- 79 p(x)]?=2y(M,— a)+x[2y— y*(x>— a)?]. (10)
orthogonal polynomials with exp- SNV(X)] as the weight ] ) o
function[7—9]. For largeN, p(x) is the solution of the inte- Now, if M>=a, thenp(0)=0, suggesting the possibility of

which has two minima foerr>0, the depth of the wells being
determined by the value af. Then, Eq.(6) yields

gral equation, band splitting atx=0; in fact p(x) is then zero fox’<a
—(2/y)Y? implying a two-band structure fora=a,

f p(y) q 5 = (2/v)Y2. To prove this, we evaluate , by the polynomial

X—y y=V'(x), ®  method. SinceM, does not depend op, we considerg

=2 for which[7-9]
valid for regions wherep(x) # 0, the integral in Eq(5) be- 1
ing the principal-value integral. Equatiofb) is obtained _* 1 2 B
from Eg. (4) by balancing repulsive and attractive forces for X) N 2:0 (h) P00 exd —2NVX) ], (D)
the levelx; in equilibrium, and is the minimization condition
for the potentiaW. Note that a level introduced in the region where PM(X) are the orthogonal polynomials with normal-
wherep(x) =0 is not in equilibrium because it experiences aizationh,,, i.e., [P, (x)P,(x)exd —2NV(x)]dx=h,3,, . For
net attractive forcdln Eq. (5), the dependence g8, N have  monic ponnomlaIs(havmg highest coefficient unity we
been factored out.Using the method of Refl9], we can have the three-term recursion relatioxP,=P,,,
write p(x) more explicitly in the three general cases of in- +X,_,P, 4, where X,=h,.,/h,, for x=0 and X_,
terest as follows. =0. SincefdX[ P, 1(X)P ,(x)exp—2NV(x)}]'=0, we have

Case I.[V(x) = when|x| -], 2UNX, (X 1+ X, F X, 1—a)=p+1, (12
V'(x)—V'
2p2_2f (X)=V'(y)

X—y
Case Il.[V(*=1)=0],

_y2 ! _ 2 2
2(1—x2)pz:2”(l XV (X))~ (A-yIHV'(y)

}p(y)dy—[V’(x)]z. (6)  valid [16] for Eqg. (9). It can be shown that, for large and
N, X, alternates betweepa=* (a —2,u/'yN)l/2]/2 for u
<(a/ac) N, while, for u=(al/a)?N, X, becomes|«a

+(a +6,u/yN)1’2]/6 all three values belng the same for
p=(alag)®N. Thus M,=N"*ZNZ5(X,+X,_,) is given,

}p(y)dy for N—o, by

X=y
~(1AV (0P @  Mema ez
=(y27)[(?+6y H¥+9y ta+a®], a=a,,
Case lll.[V(0)=2,V(X)—% asx— o], 13
s 5 XV’ (x) —yV'(y) o _ _ . .
TXpT=2 — v p(y)dy—x[V'(x)]°. the last result being valid for negative also. Finally, Egs.
y ) (10) and(13) yield, for = a,, the two-band density
mp(x)=yIX[[2y 1= (= @)?]*?, (14
Equations(6)—(8) are valid when their right-hand sides are ol e
non-negativep(x) being zero elsewhere. Furthermore, whenand, fora< «,, the one-band density
V(x) is a low-order polynomial, the integral terms can be _ 2 112 2
expressed in terms of the low-order moments of the level mp(X)=y[(13){(a"+6y" )"~ 2a}+x7]
density, M= [xPp(x)dx, which can be interpreted as the X[(213){(a?+6y HY2+al—x?]Y2 (15
order parameter for the onset of multiple bands in the spec-
trum. In both cases, the density is zero when the right-hand sides

As a simple example, consider the Gaussian cH$g) are imaginary. Note thap(x) for the one-band case is
= yx?/2 in Eq. (6), giving (sinceM,=1) the “semicircle” peaked ak=0 for < — (2/y)*?, and develops a minimum
result, w7 p(x) 12=2y— y?x?, valid for |x|<(2/y)Y2 Simi-  atx=0 for a>—(2/y)Y2 Generalized versions of E¢5)
larly, if V(x)=0O(N™1) in Eq. (7), then in the limitN— o, have been proposed in the context of disordered and mesos-
p(X)=7"1(1—x?) " 2for |x|<1, extending thereby the Ja- copic system$17,18; we expect banded spectra to arise in
cobi result of Refs[8,9] to a larger class of weight functions. these cases also.
One can analogously obtain the Laguerre result of R8f8] The above approach is applicable to a variety of polyno-
and its extensions from E@8). mial potentials in all three cases. The number of bands is
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FIG. 1. Level density for the quartic potential with—= —2, 0, 6
V2, 2(sequentially from the togandy= 1. The MC resultg¢shown =0
as filled circle$ are for =2, and correspond thl=10 in (a)—(d) 4
and N=1000 in (e)—(h). The solid lines are analytic results ob-
tained from Eq.(11) in (a)—(d), and from Eqgs.(14) and (15) in 2
(e—(h). B | | | T
O 1 1 1 1
restricted by the number of potential minima. The only ana- 0 0.2 0.4 Un 0.6 0.8 1

lytical difficulties arise in the evaluation of higher-order mo-
ments of the level density; however, these can be computed i 2. Level density for the cosine potential with-5 and(a)
by numerical solution of the coefficients in the appropriate, .03, (b)y=1.0. The MC results are fo8=2 andN=1000.
polyno_mial_—recyrsion relation. We have examined severagolid lines are results obtained from Edl). The dashed line ifg)
potentials in this context. _ _ denotes the analytic result fgr=0, and is shown for comparison.
In general, multiple-well potentialéwith equal depths  (c) shows the polynomial results and their linear fits fof andy.,
will lead to multiple-band spectra for sufficiently deep wells. vs 1h; the fit appears to be better fot,.
To illustrate this, let us consider a simple potential where the

number of bandgn) is a parameter: Our MC simulations were performed for a wide range of
N values (N<1000) with averaging over, say, A0 spectral
V(x)=9[(—1)"codnmx)—1], |x|<1, (16)  realizations, spaced widely apart in tirf® MCS. We have

considered several potentials {6 1,2,4. We have also ob-

with hard walls atx|=1 (Case Il above The parameteyy  tained results from the Langevin method. Here we discuss
determines the depth of the potential, and, we expect arepresentative MC results for the quartic and cosine poten-
n-band spectrum foly>y., with the critical value depend- tials.
ing onn. For the level density(x), we present MC results fo

For cases where the analytic density cannot be obtained 2. Figs. 1a)—1(d) showp(x) vsx for the quartic potential
explicitly [e.g., for the potential in Eq16)], one can numeri- with y=1, N=10, anda=—2,0,/2,2 demonstrating the
cally solve Eqs(6)—(8) or compute the polynomials numeri- bifurcation from the one-band case to the two-band case. We
cally and use Eq(11). We have implemented a simple itera- emphasize that the oscillations in the density are predicted by
tive mapping that relaxes to the equilibrium solution of Egs.polynomial result(11), and a detailed examination shows
(6)—(8). However, the mapping exhibits limit-cycle behavior that our MC method reproduces them accurately. Figures
around bifurcation points, e.gy= «, for the quartic poten- 1(e)—1(h) show analogous results fod=1000, which are
tial. This behavior requires careful investigation. Here wenumerically indistinguishable from analytical result$4)
present analytic results obtained using the polynomiabnd (15). In fact, only about 0.01% of the numerically-
method. The advantage of this method is that it also yield®btained levels foN=1000 lie outside the predicted bands
small-N density oscillations. (which correspond tiN—). Note that Figs. (b) and Xf)
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1.5 @ I T I T on a quadratic expansion around the minima. This argument
»  pB=1 yields y¢1, vc2 ~1/n, and the polynomial results in Fig(@
i . B=2 confirm this scaling dependence.
1= . P4 Next, we examine universality of the fluctuations about

the level density. We have studigt-3] (a) p(s), the density

- . of spacingss between adjacent levels ant) 3?(r), the
variance of number of levels in intervals of lengthbothr
ands being measured in terms of the local average spacing .
L i (The spectra were “unfolded” using the analytic level den-
sity.) Figures 3a) and 3b) show p(s) and 32(r) for the

O L ' : quartic potential with the two-band spectra fer=2, and
B=1,2,4. Agreement with the Gaussian results is excellent,
the same is also true for other valueswfind other poten-
tials. This is the first numerical confirmation of universality
in non-Gaussian ensembles, and agrees with earlier predic-
tions[8,9].

Finally, we come to specific physical applications of our
results. Non-Gaussian ensembles arise in the modeling of
conductance fluctuations in mesoscopic systems. Typically,
these ensembles corresponddpdifferent forms ofV(x) in
Eqg. (2) and/or(b) modification of the two-body interaction
term[6,18]. (Similar ensembles arise in studies of the metal-
insulator transition in disordered systefi§].) An important
theme in mesoscopic physics is the universality of conduc-
T tance fluctuations, which is a consequence of universality of
global eigenvalue correlationgn matrix ensembles. How-
FIG. 3. (@ p(s) vssfor f=1,2,4. The MC results are for the o0 i the context of banded spectra, cross-band correla-

quartic potential withy=1, «=2 (left band, andN=1000. The fions are crucial, and result in the breakdown of global uni-
solid lines represent the corresponding Gaussian-ensemble resu

[1,2], p(s) = AsPexp(—BS) with A.B determined from the condi- versgllty[lg].'Thls. has important phy.S|caI implications, and
tions of unit normalization and unit average spacifiy.3 () vsr requires detailed investigation. In a different context, the pre-

with MC results as in@). The Gaussian-ensemble results are takerPanding dip in the level d_ensilﬁpf. Figs. 1b) an_d_ )] iS_ .
from [2]. analogous to shell effects in nuclear level densities, pointing

to the applicability of these ensembles and theitbedded
correspond to the pure quartic caée., «=0). In contrast  versions to statistical many-particle spectroscphg].

p(s)

to the pure quadratic cagge., Gaussian ensembjeghe To summarize, non-Gaussian random-matrix ensembles
density exhibits a dip near the origin because the attractivare of increasing importance in diverse physical applications.
force for |x|~0 is weaker in the quartic case. We have proposed different Monte Carlo and Langevin

Figures 2a) and 2b) show the MC results for the onset methods for generating the spectra of such ensembles. Fur-
and formation of the multiple-band structure for the cosinethermore, we have formulated an analytic framework for ob-
potential withn=5 andN=1000. The corresponding ana- taining the level densities of these spectra. In this paper, we
lytic results are obtained from the polynomial method forfocused on ensembles which give rise to banded spectra. We
N=200. We definey.; andy,, as they values at which the have studied several potential functions in this context. We
first and last band-splitting occur. The scaling dependence diave confirmed the universality of energy-level fluctuations.
these quantities on (the number of potential minimacan  Finally, we stress that our methods are easily adapted to en-
be approximately ascertained by an overlap argument basedmbles of transmission and scattering matrices.
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